shutterstock_188333636.jpg
Parkinson's Disease

Anti-Inflammatory Drug for Parkinson's

An experimental anti-inflammatory drug can protect vulnerable neurons and reduce motor deficits in a rat model of Parkinson’s disease, according to researchers at Emory University School of Medicine in Atlanta. The results were published in July 2014 the Journal of Parkinson’s Disease.

A release from the university notes that the findings demonstrate that the drug, called XPro1595, can reach the brain at sufficient levels and have beneficial effects when administered by subcutaneous injection. Previous studies of XPro1595 in animals tested more invasive modes of delivery, such as direct injection into the brain.

The release quotes Malu Tansey, PhD, associate professor of physiology, as saying, “This is an important step forward for anti-inflammatory therapies for Parkinson’s disease. Our results provide a compelling rationale for moving toward a clinical trial in early Parkinson’s disease patients.”

The new research on subcutaneous administration of XPro1595 was funded by the Michael J. Fox Foundation for Parkinson’s Research (MJFF). XPro1595 is licensed by FPRT Bio and is seeking funding for a clinical trial to test its efficacy in the early stages of Parkinson’s disease.

“We are proud to have supported this work and glad to see positive pre-clinical results,” said Marco Baptista, PhD, MJFF associate director of research programs. “A therapy that could slow Parkinson’s progression would be a game changer for the millions living with this disease, and this study is a step in that direction.”

In addition, Tansey and Yoland Smith, PhD, from Yerkes National Primate Research Center, were awarded a grant this week from the Parkinson’s Disease Foundation to test XPro1595 in a non-human primate model of Parkinson’s.

Evidence has been piling up that inflammation is an important mechanism driving the progression of Parkinson’s disease. XPro1595 targets tumor necrosis factor (TNF), a critical inflammatory signaling molecule, and is specific to the soluble form of TNF. This specificity would avoid compromising immunity to infections, a known side effect of existing anti-TNF drugs used to treat disorders such as rheumatoid arthritis.
“Inflammation is probably not the initiating event in Parkinson’s disease, but it is important for the neurodegeneration that follows,” Tansey says. “That’s why we believe that an anti-inflammatory agent, such as one that counteracts soluble TNF, could substantially slow the progression of the disease.”

Postdoctoral fellow Christopher Barnum, PhD and colleagues used a model of Parkinson’s disease in rats in which the neurotoxin 6-hydroxydopamine (6-OHDA) is injected into only one side of the brain. This reproduces some aspects of Parkinson’s disease: neurons that produce dopamine in the injected side of the brain die, leading to impaired movement on the opposite side of the body.

logo

The latest for the greatest!

Get up-to-the-moment health + wellness info
  right to your inbox, plus exclusive offers!