Brain Training With Neurofeedback

A new imaging technique lets people to “watch” their own brain activity in real time and control or adjust function in pre-determined brain regions. The study from the Montreal Neurological Institute and Hospital – The Neuro, McGill University, and the McGill University Health Centre was published in the journal NeuroImage. It’s the first to demonstrate that magnetoencephalography (MEG) can be used as a potential therapeutic tool to control and train specific targeted brain regions. This advanced brain-imaging technology has important clinical applications for numerous neurological and neuropsychiatric conditions.

A release from McGill notes that MEG is a non-invasive imaging technology that measures magnetic fields generated by nerve cell circuits in the brain. MEG captures these tiny magnetic fields with remarkable accuracy and has unrivaled time resolution – a millisecond time scale across the entire brain. "This means you can observe your own brain activity as it happens," says Dr. Sylvain Baillet, acting Director of the Brain Imaging Centre at The Neuro and lead investigator on the study. "We can use MEG for neurofeedback – a process by which people can see on-going physiological information that they aren't usually aware of, in this case, their own brain activity, and use that information to train themselves to self-regulate. Our ultimate hope and aim is to enable patients to train specific regions of their own brains, in a way that relates to their particular condition. For example neurofeedback can be used by people with epilepsy so that they could train to modify brain activity in order to avoid a seizure."

In this proof-of-concept study, participants had nine sessions in the MEG and used neurofeedback to reach a specific target. The target was to look at a colored disc on a display screen and find their own strategy to change the disc's color from dark red to bright yellow, and to maintain that bright color for as long as possible. The disc color was indexed on a very specific aspect of their ongoing brain activity. The researchers had set it up so that the experiment was accessing predefined regions of the motor cortex in the participants' brain. The color presented was changing according to a predefined combination of slow and faster brain activity within these regions. This was possible because the researchers combined MEG with MRI, which provides information on the brain's structures, known as magnetic source imaging (MSI).