Hearing Loss

Can Permanent Hearing Loss Be Reversed?

Hearing loss may one day become a thing of the past thanks to a new discovery by researchers from Case Western Reserve Unity School of Medicine.

The researchers discovered that a movement of protein in the inner indicates the possibility of a of repair and renewal mechanism.

Hearing is possible when hair bundles protruding from the tops of hair cells capture the energy of sound waves, converting them into electrical signals that stimulate the auditory nerve to the brain. These hair bundles are made up of individual hair-like projections, or stereocilia, which sway in unison with other stereocilia, and remain permanently with us throughout our lives. Extremely loud noise can force a whipsaw motion of the stereocilia, causing them to be damaged and the resulting hearing loss to be permanent. The prevailing theory had been that these hair bundles were made up of cellular scaffolding proteins that do not change or circulate. But this discovery indicates that the opposite is true.

The investigator’s findings were published in the journal Cell Reports.

The discovery paves the way for one day therapeutically manipulating the movement of these proteins in a way that could reverse hearing loss, a condition that affects approximately 15 percent of Americans between the ages of 20 and 69.

“What was surprising in our research with zebrafish is that proteins move so rapidly, implying that protein movement may be required to maintain the integrity of hair bundles in the inner ear,” said senior author Brian McDermott, PhD, associate professor of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine. “Our research tells us that constant movement, replacement and adjustment among proteins in the inner ear’s hair bundles serve a maintenance and even repair function.”

In their research, School of Medicine investigators discovered that proteins in the hair bundle move at surprisingly fast rates, and this movement could explain why hair bundles last a lifetime. The researchers used a confocal microscope to examine the movement in real time of these proteins within the inner ears of baby zebrafish. The zebrafish at this early state of development are completely transparent, making it possible to view internal organs without dissection, including ear structure.

“We made movies of the secret inner workings of the hair bundle in a live animal, and what is happening in the ear is amazing and unexpected,” McDermott said.

The researchers discovered that two vital proteins, actin and myosin, move at a leisurely pace over the course of hours. On the other hand, another protein, fascin 2b, moves incredibly fast, in seconds. This research proved that the internal structure of stereocilia is dynamic, that the proteins move frequently rather than being mostly stationary.


The latest for the greatest!

Get up-to-the-moment health + wellness info
  right to your inbox, plus exclusive offers!