heart and stethoscope copy
Heart Health

Combining Two Imaging Technologies to Identify Coronary Plaques

Combing optical coherence tomography (OCT) with another advanced imaging technology may more accurately identify coronary artery plaques that are most likely to rupture and cause a heart attack. In a report published online in March 2016 in JACC Cardiovascular Imaging, investigators from the Wellman Center for Photomedicine at Massachusetts General Hospital (MGH) describe the first use in patients of a catheter-based device utilizing both OCT and near-infrared autofluorescence (NIRAF) imaging.

A release from the the MGH quotes co-senior author Gary Tearney, MD, PhD, of the Wellman Center and the MGH Pathology Department, as saying, “OCT provides images of tissue microstructure but not of its chemical and molecular composition. Since both of those characteristics are needed to fully understand coronary artery disease, the combination of OCT with NIRAF could provide a more powerful tool for investigating coronary pathology.”

The detailed images provided by OCT are created by bouncing near-infrared light off the internal surfaces of blood vessels and can identify plaques that have the appearance of rupture-prone “vulnerable” plaques with the potential to cause a heart attack or sudden cardiac death. Fluorescence imaging techniques like NIRAF illuminate an artery with a specific wavelength of light to excite certain molecules, which respond by emitting different wavelengths. Since only certain molecules respond, the resulting signal provides information on the molecular composition of analyzed tissue.

Tearney’s team has been investigating whether the additional data provided by NIRAF could identify rupture-prone sites within arterial plaques – particularly fibroatheromas, advanced lesions consisting of a core of dead cells covered by an often-thin fibrous cap, which are particularly prone to rupture. In a previous study using coronary artery segments from cadavers, the investigators showed that the NIRAF signal was elevated in fibroatheromas and highest in those with thin fibrous caps. The current study is the first to investigate the use of NIRAF in living patients.

The study enrolled 12 patients receiving cardiac catheterization at the MGH between July 2014 and January 2015. In addition to the clinical procedures conducted to diagnose and/or treat the patients’ cardiac disease, Farouc Jaffer, MD, PhD, director of MGH Coronary Intervention and co-senior author of the paper, used the novel device developed by the Wellman/MGH team that acquires both OCT and NIRAF data to construct images of coronary arterial segments. The investigational procedure was identical to that used for conventional OCT imaging.