Mitochondrion_mini.svg_.jpg

Long Live the Mitochondria!

Manipulating the metabolic process of mitochondria, the “power plants” of cells, may compensate for defects that are associated with aging and various neurological diseases. That is the finding of scientists at the University of Alberta who published their research on April 10th 2014 in Cell Reports. The study will appear in the print edition of the journal on April 24th.

A release from the university written by Amy Hewko explains that mitochondria “produce energy for cells through oxidative metabolism, but the process produces toxic byproducts that can accumulate and cause defects in the cell’s mitochondria.”   

Lead author Magnus Friis PhD, examined how dietary changes at the cell level can affect cell health. He exposed normal and defective yeast cells to two different energy sources: glucose, the preferred sugar of cells, and raffinose, a natural sugar found in vegetables and whole grains.

The release quotes Friis, a postdoctoral fellow in Mike Shultz’s biochemistry lab, as saying, “[The dietary intervention] is a general shift in what we’re feeding the cells to get them to do something different with their whole nutrient metabolism. There are signaling pathways that allow a cell to sense its environment and co-ordinate events to allow the cell to adapt to what’s going on. In this case, [cells are responding to] which nutrients are available.”

Friis, Schultz and colleauges examined two nutrient signaling pathways called the AMPK pathway and the retrograde response. AMPK responds to energy deficits in the cell by down-regulating energy consuming processes, which are often associated with cell growth, and up-regulating energy producing processes. The retrograde response pathway is specific to the yeast used in the study and supplies key amino acids to the cell by changing the metabolic process of the mitochondria.  

When activated individually, neither the AMPK pathway nor the retrograde response provided substantial benefits to cells with damaged mitochondria. When activated simultaneously, clear benefits became evident.

“We looked at the effect activating both pathways had on maintenance of cellular viability in what’s called a chronological aging experiment,” Friis said. “Even when they had defective mitochondria, the cells with the retrograde response and AMPK simultaneously activated during growth were able to live as long as cells with normal mitochondrial function. By activating AMPK, we’ve removed certain blocks in metabolism. With the retrograde response, we’ve changed the amino acid metabolism in a way that allowed the cells to accumulate storage carbohydrates, which stabilize their function.”

logo

The latest for the greatest!

Get up-to-the-moment health + wellness info
  right to your inbox, plus exclusive offers!