161145142.jpg
Digestive Health

Possible Breakthrough for IBD Tx

A microRNA cluster believed to be important for suppressing colon cancer plays a critical role in wound healing in the intestine, according to researchers at the University of Texas Southwestern Medical Center in Dallas. The findings could provide a fresh avenue for investigating chronic digestive diseases and for potentially repairing damage in these and other disease or injury settings.
A release from the medical center quotes Dr. Joshua Mendell as saying, “We identified a novel role for microRNAs in regulating wound healing in the intestine. This finding has important implications for diseases such as ulcerative colitis and Crohn’s disease and may be relevant to wound healing mechanisms in other tissues.”

Ulcerative colitis and Crohn’s disease — the two most common inflammatory bowel diseases affecting an estimated 1.5 million in the U.S. — stem from an abnormal immune response, which results in the body mistakenly attacking cells in the intestine. The resulting chronic injury to the colon also is considered a risk factor for colon cancer. Understanding the cellular pathways involved could eventually lead to potential therapeutic treatments.

MicroRNAs serve as brakes that help regulate how much of a protein is made, which, in turn, determines how cells respond to various stimuli. Approximately 500 to 1000 microRNAs are encoded in the genomes of mammals. Dr. Mendell’s laboratory studies how these tiny regulators work normally and how diseases such as cancer arise when they function in an abnormal manner.

These latest findings, which appear in the May 2014 issue of thejournal Cell, focus on two microRNAs: miR-143 and miR-145. While there is extensive literature implicating these microRNAs in colon cancer, little is known about their natural function in the colon. So Dr. Guanglu Shi, postdoctoral researcher in Molecular Biology, and other researchers began their five-year investigation by removing or “knocking out” the gene that produces these two microRNAs in mouse models.

The researchers found that the cells that normally increase their growth to make repairs, called epithelial cells, fail under stress in the knockout animals. Epithelial cells line the intestines where food is digested, separating the contents from the rest of the body and absorbing needed nutrients.

“The epithelial cells of the colon normally proliferate quickly to fill in the wounds from an injury. Without these microRNAs, the epithelial cells are unable to switch into this repair mode, so they never heal the wounds and the mice are not able to survive,” Dr. Shi said.

In addition, the research upended traditional thinking about where the tiny microRNAs reside, discovering to everyone’s surprise that they reside in supporting cells, called mesenchymal cells, instead of the epithelial cells themselves as previously thought.

logo

The latest for the greatest!

Get up-to-the-moment health + wellness info
  right to your inbox, plus exclusive offers!