SleepHygiene
Sleep Health

Solving the Sleep-Wake Cycle Mystery

Scientists are drawing closer to understanding the biological basis for our patterns of sleeping and waking.

Researchers from the University of Maryland School of Medicine (UM SOM) have identified the workings of a key pathway for these processes. The pathway that appears to play a key role in regulating the “switch” between wakefulness and sleep. This is the first study to elucidate this process in such biophysical detail.

Andrea Meredith, PhD, Associate Professor of Physiology at UM SOM, focused on a particular brain area, the suprachiasmatic nucleus in the hypothalamus. This region acts as the brain’s internal clock, determining when we feel like going to sleep, how long we sleep, and when we feel like getting up. Within the suprachiasmatic nucleus, which is known as the SCN, she focused on certain ion channels, proteins that conduct electrical current, relaying information from one neuron to another. She focused on a group of channels known as BK potassium channels, which seem to be particularly active in the SCN.

In the paper, which appeared in Nature Communications, Meredith examined mice, whose schedule is opposite to humans – they sleep during the day and are awake at night. She found that the BK potassium channels are active during waking, which for the mice was at night; during the day the BK channels were inactive. She found that in this daytime context, the role of the BK channels is to inhibit wakefulness.

Meredith examined normal mice, along with mice that had been genetically altered so that their BK channels could not be inactivated. She then recorded activity in these channels, via electrodes placed in SCN neurons. In the brains of the genetically modified group, the animals that could not inactivate their BK channels, she found lower levels of neuronal activity, which was associated with more daytime wakefulness. This was unusual, because mice generally sleep during the day.

The new findings are surprising, for several reasons. The researchers didn’t know of any physiological process in the body that relied on BK channel inactivation as a mechanism. Scientists had known that the channel acted in this way, but didn’t know how neurons used this mechanism to regulate information coding in the brain. This is the first study to show that BK channel inactivation is critical for encoding circadian rhythm in the brain.

Previously, BK channels had been known to be important for regulating other physiological functions. They are important for activating muscles, and play a prominent role in controlling blood pressure, heart rate, and bladder function. In the brain, BK channels have been known to be involved in regulating neuronal excitability, and play a role in motor control, learning and memory. In the brain, dysfunction in BK channels is associated with tremors, seizures, addiction, and problems with learning and memory.

logo

The latest for the greatest!

Get up-to-the-moment health + wellness info
  right to your inbox, plus exclusive offers!