Teenager sleeping
Sleep Health

A Wrist Gadget Can Help in Sleep Studies

Sleep studies, which have always been performed in an expensive laboratory setting, could be replaced by a much simpler method that allows subjects to sleep at home.

The details were published in Current Biology.

According to the researchers, the findings represent a major breakthrough in sleep research because, for the first time, it will now be possible to objectively capture the real-life sleep habits and sleep quality of large numbers of people.

“There has been practically no possibility of getting detailed sleep structures in a normal life setting over a long period of time,” said Till Roenneberg of LMU Munich in Germany. “You can’t easily give somebody an EEG to take home and have next to the bed. You can’t do this over six weeks or six months. We are going to see things nobody has seen before.”

The key is a simple, wrist-worn research gadget that can be purchased for as little as $150. They are akin to commercially available self-trackers used by consumers. The gadgets, called actimeters, record data on wrist movement from which one can obtain activity patterns for up to three months. The researchers used the actimeters to assess rest/activity cycles not just over the course of the waking day, but also during sleep itself.

The findings are the latest in a larger, ongoing human sleep project, designed to learn more about sleep and its essential role in our lives by collecting sleep data on thousands of people in the real world. Roenneberg’s team had been collecting information on sleep duration and quality via questionnaire. The next step was to find a way to collect objective measurements of sleep characteristics on similarly large numbers of people.

In the new study, Roenneberg and colleagues, including Eva Winnebeck, looked to actimeter data collected over more than 20,000 days from 574 subjects, aged 8 to 92 years. But the patterns of activity during sleep collected using the devices appeared rather messy. It was hard to discern the cyclical sleep patterns normally seen with other, more complicated devices in the lab.

Then, they noticed something: by focussing on periods of inactivity during the night, a much clearer cyclical pattern began to emerge. The researchers used a simple conversion to measure inactivity (as opposed to activity) on a scale of near zero to 100, with 100 representing total inactivity.

The researchers call the new measure “locomotor inactivity during sleep” (LIDS). Those measures showed that movement patterns reflect sleep cycles and replicate the dynamics seen in the lab. The data showed no sex differences in LIDS-derived sleep dynamics, although men move more than women do. They did observe large differences among individuals based on their age and work schedules.

Roenneberg said that it wasn’t clear at first how the inactivity cycles matched up to the patterns of rapid eye movement (REM) and non-REM sleep typically measured in the lab. Further study revealed that periods of least activity reflected deeper sleep. Those of greater activity corresponded to light and REM sleep. That’s because, during REM sleep, the extremities frequently twitch and those twitches are detected by the actimeters.

 

 

you may also like

you may also like

Recipes We