Medical Research

Key Protein Molecule of Aging Discovered

Scientists have discovered a protein molecule that represents a crucial switching point in the aging process.

In fact, they say, it controls the life span of individuals from the fly to the human being.

The discovery, by investigators at the German Cancer Research Center in Heidelberg (DKFZ), opens up new possibilities for developing therapies against age-related diseases, according to a news release from the research center.

Oxidative stress causes cells and entire organisms to age.

If reactive oxygen species accumulate, this causes damage to the DNA as well as changes in the protein molecules and lipids in the cell. The cell ultimately loses its functionality and dies. Over time, the tissue suffers and the body ages. “The theory of oxidative stress or the accumulation of reactive oxygen species as the cause of aging has existed since the 1950s,” said Peter Krammer of the DKFZ. “So far, however, the details of this process were unclear.”

In fact, reactive oxygen species do more than just damage the body. For example, they are essential for the T-cells of the immune system to become active. DKFZ researchers led by Krammer and Karsten Gülow have now discovered the key regulator that is responsible for shifting the sensitive balance from vital to harmful amounts of reactive oxygen molecules and thus accelerating the aging process: A protein molecule called TXNIP (thioredoxin-interacting protein).

One way in which the body disposes of harmful reactive oxygen species is their conversion by the enzyme thioredoxin-1 (TRX-1).

TRX-1 has been proven to play a role in protecting DNA from oxidative stress and slowing down aging processes. Its antagonist TXNIP inhibits thioredoxin-1 and thus ensures that the reactive oxygen molecules are retained.

The DKFZ researchers now wanted to know whether more TXNIP is formed in the body with increasing age, thereby undermining the protective mechanism against oxidative stress. To this end, they first compared T cells from the blood of a group of over 55-year-old volunteers with the T cells of younger blood donors, who were between 20 and 25 years old. In fact, it turned out that the cells of older subjects produce significantly more TXNIP. The DKFZ scientists have also observed similar findings in other human cell and tissue types.

The researchers also found out that more TXNIP is produced in the fly Drosophila with increasing age.

In order to test whether TXNIP is actually responsible for aging, they bred flies that produce significantly more TXNIP than their relatives as well as flies in which TXNIP synthesis is greatly reduced. “Flies that produced more TXNIP lived on average much shorter, while flies with less TXNIP had a longer average life,” said Tina Oberacker, who was responsible for the fly experiments.

“TRX-1 and its opponent TXNIP are highly conserved in the course of evolution; they hardly differ between flies and humans,” Krammer explained. It can therefore be assumed that the two proteins perform similar functions in flies and humans. If more TXNIP is produced with increasing age, this means that TRX is gradually switched off with its protection function. This leads to more oxidative stress, which damages cells and tissue and eventually causes them to die.

Krammer is convinced that TXNIP is a key regulator for aging. “Scientists have found hundreds of genes that are somehow related to the aging process,” he said. “But it is enough to switch off TXNIP to delay aging. Similarly, aging can be accelerated if we get the cells to produce TXNIP. “And that makes it an interesting candidate to intervene in the aging process in the future.”

you may also like

Recipes We

Khela88

Fancywin

Jita Ace

Betjili

https://betvisa1.org/

jeetbuzz লগইন

jeetwin app

baji999

winbuzz

betvisa login

winbuzz

six6s

babu88

marvelbet

krikya

mostplay

4rabet

leonbet

pin up

mostbet

all rummy app

Fastwin

Jitawin

R777

Bhaggo

PBC88

Winbdt

Crickex

Betjee

Glory Casino

Jita Bet

Melbet

Jwin7

Jita Ace

Krikya

Six6s

Betjili

Mostplay

Jeetbuzz

Jeetwin

Mostbet

Baji999

Marvelbet

Betvisa

Mcw

Nagad88

Babu88

Jaya9

babu88 babu88 jeetwin abbabet nagad88 marvelbet melbet mostbet six6s crickex mcw casino baji999 betvisa krikya mostplay crazy time jeetbuzz 79king1 good88 11bet xoso66 nohu78 xin88 nohu90 v9bet fastwin betvisa
jeetbuzz
babu88
babu888
jeetwin
nagad88
jaya9
khela88
mostplay
baji999
abbabet
1xbet 12bet marvel bet 91 club betvisa login baji999 sky247 gugobet lotus365 yolo247 bsport loto188 bsport site 8day xoso66 v9bet rummy deity yono rummy new88 typhu88 jeetbuzz dafabet lotus365 bet88 v9bet đăng nhập thienhabet 188bet link dafabet login betvisa king567 yolo247 login 1xbet login 24betting 91club crickex kubet new88 hi88 jun88 w88 shbet mksports 33win f8bet 123b fb88 vn88 mu88 five88 bk8 w388 gnbet mcw casino thienhabet sodo casino cmd368 bsport eubet sbobet mibet cmd368 Faridabad Satta Satta King 786 Dafabet betvisa yono rummy rummy apk

alo789

https://metalwave.com.mx/app/

https://meisetio.com/wp-includes/js/jquery/ai/index.php?tunnel=alo-789

https://purneauniversity.ac.in/assets/js/mk/?tunnel=baji999

fastwin

fastwin

winzo

winzo

futemax

Kèo nhà cái

bongdadzo

Tỷ số bóng đá

KQBD

Kết quả bóng đá

rummy nabob

hi88

8day

97win

n88

red88

king88

j88

i9bet

good88

nohu78

99ok

bet168

satta king

satta matta matka

Canais Play

ALO789

yono rummy
rummy deity
rummy nabob
rummy wealth
daman games
jeetbuzz
yolo247
baji999
rummy gold
188bet
v9bet
789bet
crickex
1xbet
thienhabet
c54
sky88
33win
79king
kubet
shbet
good88
3king
nohu
lucky88
97win
xoso66
xin88
daga88
yolo247
jeetbuzz
betvisa
jeetwin
baji999
nagad88
babu88
mostplay
babu888
jaya9
khela88
jaya9
khela88
jeetbuzz
betvisa
abbabet
babu88
babu888
jeetwin
nagad88
jaya9
joya 9
khela88
mostplay
marvelbet
baji999

Sponsored From Malaysia

말레이시아에서 후원